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Solutions

Solution Problem 1 This is a linear control system and there is no constraint on the control
bound. Hence, we just need to verify that the Kalman condition holds. In
this problem, n = 6 so we need to verify that rank(B,AB, . . . , A5B) = 6.
Notice that the matrix B has the form

B =


c1 −c3 0
c2 0 0
0 0 0
c1 c3 0
0 c4 0
0 0 c5


where c1, c2, c5 6= 0. Computing, we get

AB =


λ1c1 −λ1c3 0

0 c4ω1 0
0 0 c5ω2

−λ1c1 −λ1c3 0
−c2ω1 0 0

0 0 0

 , A2B =


λ21c1 −λ21c3 0
−c2ω2

1 0 0
0 0 0

λ21c1 λ21c3 0
0 −c4ω2

1 0
0 0 c5ω

2
2

 ,

and

A3B =


λ31c1 −λ31c3 0

0 −c4ω3
1 0

0 0 c5ω
3
2

−λ1c31 −λ31c3 0
c2ω

3
1 0 0

0 0 0

 .

For instance, consider the first and third columns of B, the first and third
columns of AB, the first columns of A2B and the first column of A3B.
They form the set of vectors

c1
c2
0
c1
0
0

 ,


0
0
0
0
0
c5

 ,


λ1c1

0
0

−λ1c1
−c2ω1

0

 ,


0
0

c5ω2

0
0
0

 ,


λ21c1
−c2ω2

1

0
λ21c1

0
0

 ,


λ31c1

0
0

−λ31c1
c2ω

3
1

0

 .

1



and are linearly independent if the vectors

u1 =


c1
c2
0
c1
0
0

 , u2 =


λ1c1

0
0

−λ1c1
−c2ω1

0

 , u3 =


λ21c1
−c2ω2

1

0
λ21c1

0
0

 , u4 =


λ31c1

0
0

−λ31c1
c2ω

3
1

0

 .

are linearly independent. Let αi, i = 1, . . . , 4 be for real numbers such that∑4
i=1 αiui = 0. From row 2, we get α1 = α3ω

2
1 . Summing rows 1 and 4, we

get α1 = −α3λ
2
1. Hence α1 = α3 = 0. Therefore, row 1 simplifies to α2 =

−α4λ
2
1. From row 5, we get α2 = α4ω

2
1 . Hence α2 = α4 = 0. As the result,

we have found 6 column vectors of the matrix rank(B,AB, . . . , A5B) which
are linearly independent so rank(B,AB, . . . , An−1B) = 6.

Solution Problem 2 Prove (2) ⇔ (3). (2) ⇒ (3) is obvious so we just need to prove
(3) ⇒ (2). Let λ ∈ C. If λ ∈ Spec(A), then rank(λI − A,B) = n
according to (3). If λ /∈ Spec(A) then det(λI − A) 6= 0 which is
equivalent to rank(λI − A) = n and therefore rank(λI − A,B) = n
as well.

Prove (3)⇔ (4). Assume (3). Let z be an eigenvector of AT . There
exists λ ∈ Spec(A) such that (λI − AT )z = (λI − A)T z = 0. If
BT z = 0, then (λI − A,B)T z = 0 so Ker(λI − A,B) is not {0}
and rank(λI − A,B) < n which is contradictory with (3). Now,
assume (4). Let λ ∈ Spec(A) and z 6= 0. If (λI − A)T z 6= 0 then
(λI − A,B)T z 6= 0. If (λI − A)T z = 0 then, according to (4), (λI −
A,B)T z 6= 0. So Ker(λI −A,B) is {0} and rank(λI −A,B) = n

Prove (2) ⇔ (5). Assume (5). Let z 6= 0 ∈ Rn. Then ||(λI −
A,B)T z||2 > 0 so (λI − A,B)T z 6= 0. Hence Ker(λI − A,B) is {0}
and rank(λI − A,B)T = rank(λI − A,B) = n. Now, assume (2). If
(5) does not hold then, for all c > 0, there exist λ ∈ C and z ∈ Rn

such that ||(λI−AT )z||2 + ||(BT z||2 < c||z||2. Therefore, there exists
λ ∈ C such that ||(λI −A,B)T || = 0 which means that (λI −A,B)T

is the null operator so rank(λI−A,B)T = rank(λI−A,B) 6= n which
is contradictory with (2).

Prove (1) ⇔ (4). Assume (4) does not hold. Then there exist an
eigenvector z of AT , associated with an eigenvalue λ, such that
BT z = 0. Hence, for all 1 ≤ k ≤ n − 1, we have (AkB)T z =
BT (AT )kz = λkBT z = 0. Therefore (B,AB, . . . , An−1B)T z = 0 so
Ker(B,AB, . . . , An−1B)T is not {0} and rank(B,AB, . . . , An−1B)T =
rank(B,AB, . . . , An−1B) < n so (1) does not hold. Now, assume that
(1) does not hold. Set N = {z ∈ Rn | zTAkB = 0 ∀k ∈ N}. If z ∈ N
then, for all k ∈ N, (AT z)TAkB = zT (AT )k+1B = 0. Therefore
ATN ⊂ N . In other words, N is stable under AT . Since (1) does not
hold, there exists z ∈ Rn 6= 0 such that (B,AB, . . . , An−1B)T (z) 6= 0
which means that (AT )kz ∈ Ker(BT ) for all 1 ≤ k ≤ k − 1. Using,
for instance, an induction, we can show that, necessarily, (AT )kz ∈
Ker(BT ) for all k ∈ N. Hence N 6= {0}. Since AT is diagonaliz-
able over C, the invariant subspaces of AT are spanned by a subset
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of the eigenvectors of AT . Therefore, there is an eigenvector of AT

contained in N and (4) does not hold.

Solution Problem 3 1. When u = 0, the system writes ˙ω1(t)
˙ω2(t)
˙ω3(t)

 =

 ω2(t)ω3(t)
−ω1(t)ω3(t)
ω1(t)ω2(t)

 = F0

 ω1

ω2

ω3


The vector field F0 is volume-preserving since divF0 =

∑3
i=1

∂F0

∂ωi
= 0.

In addition, notice that the mapping f(ω1, ω2, ω3) = ω2
1 + 2ω2

2 +
ω2
3 is constant along every solution of the system since we have

d
dtf(ω1(t), ω2(t), ω3(t)) = 0. Therefore, every ellipsoid ω2

1 + 2ω2
2 +

ω2
3 = c, c > 0 is invariant under the flow of F0. Since such ellipsoid

are all bounded, the Poincaré recurrence theorem asserts that F0 is
positively recurrent/Poisson-stable on every ellipsoid. Hence, F0 is
Poisson-stable.

2. We denote

F1

 ω1

ω2

ω3

 =

 b1
b2
b3

 .

The system is controllable if and only if Lieω{F0, F1} has rank 3 for
all ω = (ω1, ω2, ω3) ∈ R3. In other words, we want to show that the
rank condition is satisfied. Notice that F0 is a degre 2 homogeneous
polynomial vector field. Indeed, for all α ∈ R , we have Lieω

F0(αω) = α2F0(ω).

Therefore Lieω{F0, F1} = R3 for all ω = (ω1, ω2, ω3) ∈ R3 if and only
if the subalgebra of constant vector fields in Lie{F0, F1} is of dimen-
sion 3 (classic theorem, see for instance Geometric control theory,
V. Jurdjevic, Cambridge Studies in Advanced Mathematics, p143).
A basis for this subalgebra can be found among the Lie brackets of
{F0, F1} of order up to 4 (another classic theorem, see again Geo-
metric control theory, V. Jurdjevic, Cambridge Studies in Advanced
Mathematics, p144). Computing, we find that this subalgebra is
spanned by the constant vector fields

f1 = b

f2 = [[F0, f1], f1],

f3 = [[F0, f1], f2],

f4 = [[F0, f1], f3],

f5 = [[F0, f2], f2],

and the rank is 3 if and only if the 3 vectors

f1 = (b1, b2, b3)T ,

f2 = 2(b2b3,−b1b3, b1b2)T ,

f3 = 2(b1(−b23 + b22),−b2(b23 + b21), b3(b22 − b21))T
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are linearly independant. Therefore, the rank condition is satisfied
everywhere on R3, unless two of the entries bi, i = 1, 2, 3 are zeros
or b3 = ±b1.
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